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Abatraet--A two-dimensional, time harmonic, free-mode analysis has been applied to the stratified 
regime, assuming a planar interface at constant height separating two fluids. The resulting 
dispersion relation has been solved asymptotically in the common case of one fluid being much 
lighter than the other, and a set of acoustic modes, apparently unnoticed previously, has been 
highUghted. 

1. INTRODUCTION 

This study was prompted by a recent publication by Nguyen et al. (1981), (hereafter 
referred to as NWG), in which a simple but general theory was developed for several 
two-phase flow regimes, including stratified, slug and homogeneous flows. That theory was 
based on the notion that the interface between the two phases behaves elastically in a 
similar manner to an elastic tube (Wylie & Streeter 1978). However, the widely used 
formulae for sound speeds in elastic tubes are founded on a quasi-steady formulation in 
which flexural wall waves are ignored; in acoustic terms, the walls are regarded as 
locally-reacting and are represented by an impedance condition. Clearly, such a model is 
physically unrealistic, and inclusion of flexural motion produces more meaningful results 
(Sinai 1981). 

A similar difficulty arises in the two-phase situation, since the interface separates two 
wave-bearing media, and questions therefore arise as to the veracity of NWG's analysis. 
In fact, the calculations described in the present paper indicate that the NWG theory 
violates the kinematic and dynamic conditions at the interface, namely equality of 
displacement and pressure on both sides of that discontinuity. Indeed, NWG confined 
themselves to one-dimensional motion, so that their picture of wave propagation in 
horizontal stratified regimes consisted of vertical wave fronts in both the liquid and the 
gas, travelling at different speeds: this implies discontinuous pressures. 

For these reasons, a rigorous analysis is presented herein, within the confines of  linear 
theory, and for the sake of mathematical tractability attention is focused on the 
two-dimensional stratified regime ignoring mean, background flow as well as gravitational 
and surface tension effects. Moreover, the motion is assumed to be time-harmonic, so that 
the "free-mode" analysis produces a dispersion relation for the axial wave number as a 
function of frequency. The dispersion relation cannot be solved analytically in general, so 
that sometimes it may be necessary to solve it numerically. However, the present paper is 
confined to the common situation in which the density of one fluid is much smaller than 
that of the other, and it is then possible to obtain explicit asymptotic results in terms of 
the ratio of the two densities. 

Morioka & Matsui (1975) appear to have been the first to carry out a two-dimensional 
analysis, and a number of papers have since compared two-dimensional and one- 
dimensional theories (e.g. Banerjee & Chan 1980; Ardron 1980; Wallis & Hutchings 1983). 
The present contribution identifies a set of acoustic modes which do not seem to have been 
noticed by Morioka & Matsui and other workers. 

The interesting point in NWG's paper is the good agreement between theory and 
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experiment. However, for the stratified regime their theory yielded two formulae, one 
predicting a phase speed close to that of  the gas and the other predicting a speed much 
lower than that speed. They found that the former agreed well with experiment (Henry 
et al. 1971) (hereafter referred to as HGF), whereas the latter did not. The present paper 
explains these contradictions and quantifies the phase speeds of the higher "duct" modes 
precluded from NWG's analysis. 

It should be emphasized that this paper does not present the results for a particular 
boundary or initial-value problem, and in applying the predictions of a time-harmonic 
analysis to the evolution of a particular pulse, one should assess the frequency spectrum 
and utilize the known techniques for wave propagation in dispersive media (Whitham, 
1974). However, under certain conditions the phase speeds are virtually independent of 
frequency, so that within the context of the current assumption the pulse form will remain 
unaltered as it propagates. 

The assumptions made are the following: 
(i) 

(ii) 
(iii) 
(iv) 
(v) 

the use 
(vi) 

the duct walls are rigid 
the void fraction is constant and no large waves exist on the interface 
fluid viscosity, Conduction and phase changes are ignored 
if fluid motion arises, the Mach number is small 
all disturbances are small with respect to the background state, thereby permitting 
of linear theory 
the motion is two-dimensional in space. 

2. THE G E N E R A L  D I S P E R S I O N  R E L A T I O N  

Referring to figure 1, the velocity potential 47(x, y; t) satisfies the wave equation in both 
fluids: 
region I: 

o ? ( &  + 47 . ) -  47,, = o [2.1a] 

region II: 

c?(47  + 47.)- 47,,= o [2.1b] 

where c~ and c2 are the acoustic sound speeds in regions I and II, respectively. The search 
for time-harmonic waves travelling in the axial direction is implemented by decomposing 
47 into the form 

47(x, y, t) = e~*~-°°~ ty). [2.2] 

Here k is the axial wave number for the two-fluid system, co is the frequency (rad.s -l) and 
the ~b's for the two fluids will be different. 
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Figure 1. The stratified configuration. 
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The general solutions of [2.1] are: 

~b I = Ave,, + Be -~ty 

~Xl = C e ~  + D e - ~  

where 
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[2.3a] 

[2.3b] 

),j ffi (k s - Kj2) ~/2, Kj - o~/cj, j =-1, or 2. [2.4] 

It should be mentioned that since waves may travel in both the negative and positive-y 
directions, the precise interpretation of 4: when both k and Kj are real and k < Kj is 
unimportant. Also, the velocity potential is defined in such a way that the perturbation 
velocity vector and pressure are given by F~ and - p ~ / O t ,  respectively, where p denotes 
density. 

Applying the boundary and inteffacial conditions leads to the dispersion relation 
(Morioka & Matsui 1975) 

22 tanh (22h2) + p41 tanh (4~h~) ffi 0; p ffi P2/P~. 

A check on this situation is provided by the various possible limits: 

viz. 

(1) h 2 = O, 41 sinh (41hi) ffi 0 

[2.5] 

41hi = + inn, n = O, 1, 2 . . . .  [2.6] 

o r  

kS = K'2 - \ h, ) 

which is the classical result for singie-phase fluid (Rayleigh 1945). Associated with [2.6] 
is the notion of a cut-off frequency ¢o, below which k becomes pure-imaginary, implying 
a rapid damping of the particular mode: 

~o. - n,rc,  ~ h i .  [2.7] 

A similar limit arises when hl-~0. 

(ii) p = 1, 41 - 22 ffi 4: this corresponds to a single-phase fluid also and (2.5) becomes 

sinh [4 (hi + h2)] -- 0 

which is the correct limit. 
In conclusion, it should be emphasized that a value of 2j which is real corresponds to 

plane waves in the particular fluid, and imaginary 4j represents oblique waves associated 
with higher duct modes; the unfamiliar reader is referred to Rayleigh (1945) and Morse 
& Ingard (1968). The textbooks also discuss the transmission of oblique acoustic waves 
across material interfaces, and it is useful to remember that the character of the field in 
a fluid depends on the speed of propagation of the disturbance at its boundary; if the speed 
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is supersonic, oblique waves arise, but if the speed is subsonic an exponentially-decaying 
surface wave exists, with "wavefronts" perpendicular to the boundary (this corresponds 
to total internal reflection). 

In the current problem the situation is complicated a little by the presence of the two 
rigid surfaces, but all these phenomena are encapsulated in the form of [2.3] and the 
solution of the dispersion relation. 

3. A S Y M P T O T I C  R E S U L T S  F O R  S M A L L  D E N S I T Y  R A T I O  

As discussed in section 1, it is not possible to solve [2.5] analytically for k as a function 
of co, but the quantity p is frequently very small, and it is then a straightforward matter 
to derive asymptotic results. Write the relation [2.5] as: 

F =fo(k) + pf~(k) = 0 [3.1a] 

where 

fo = 22 cosh (21hl) sinh (22h2) [3.1b] 

ft  = 21 sinh (2thO cosh (22h2). [3.1c] 

In a first approximation, k is given by k(°),where: 

fo[k(o  = o. [3.2] 

It follows that the 0(p) correction to k is given by: 

k = k (°) + pk°); k o) = - ~]f~) evaluated at k -- k (°) [3.3] 

providedf'o [k (°) ] exists. Heref~ - Of o/Ok. 
Actually, when dealing with plane modes, it turns out that f~ does not exist, and it is 

then necessary to expand f0 and fl formally, term by term. 
As may be seen from [3.1b], two sets of solutions exist: those associated with the 

vanishing ofcosh (2ths), referred to as "heavier-fluid modes" and those associated with the 
vanishing of sinh (22h~), referred to as "lighter-fluid modes". The two sets will be 
considered separately. The heavier-fluid modes do not appear to have been noticed 
previously. Morioka & Matsui (1975) did solve the dispersion relation numerically, but 
as an initial guess their numerical algorithm utilised the asymptotic approximation to the 
"ligher-fluid" modes, and it is therefore not surprising that the heavier-fluid modes were 
not identified numerically. The inclusion of the residues associated with these modes would 
modify the profiles they obtained for the temporal evolution of an initial pressure step. 

3.1 Lighter-fluid modes 
The relevant solutions of [3.2] are given by 

2~)h2 = - /n~ ,  n = O, 1, 2 , . . .  

where 22 has also been decomposed into an asymptotic form: 

[3.1.1] 

= 2/0) + [3.1.2] 

It should be noted, though, that 2 (!) is not always an O(p) correction. It is seen 
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immediately from [3.1.1] than n = 0 will lead to an almost-planar mode propagating at a 
speed close to c2 which is evidently the case observed by HGF.  

In order to emphasize the modal forms, re-write [3.1.2] as follows: 

L~h2 = - in~ + ~,,. [3.1.3] 

From [3.1.3], the wavenumber will be deduced as: 

k ffi k, ffi k, (°) + k, °), k, °) ,~ k, (°) 
where 

k , o >  = ' ' '  

~h2IJ ' o~,= h2 

Consider first the plane mode n -- 0. Substitution of  [3.1.3] in [3.1] leads to: 

[3.1.4a] 

[3.1.4b] 

where 
1202 ffi - -  p h 2 ( ~ l )  2 t a n h  ( ,~ lh lh  

(~02 = ( ~ ) k - ~  = (K22 - K,2F 2. 

[3.1.5a] 

[3.1.5b] 

Equations [3.1.3] and [3.1.5] imply that: 

P /Co 2 ffi K2 2 - ,~-(~lh tanh ~.lhl. 
n2  

[3.1.6] 

Noting that the phase speed is given by co~k, [3.1.6] may be written as: 

1 1 P 2 K,2) i~ tanh [(K2 2 - Kl~)I/2hl]. 
~02 = c~2 02h2 (K2 - 

[3.1.7] 

Evidently, this mode is slightly faster than c2. Several simplifications may arise. First, if 
f l~d 1 depth is '~compact", viz. the frequency is sufficiently small ~ t  [(2~-)2hi[~ 1, [3.1.7] 
becomes: 

- ~ * - p  [3.1.8] 

where the void fraction a, in the present r e , m e ,  is given by: 

-- h, + h---~" t3.1.9] 

Furthermore, if c2 ~ e,, this simplifies to: 

1 1 1 - - ~  "]  

(K2 ~" K,). [3.1.10] 
1 l - a  ao~c,[l-t-~p(-~.--)] 

Another interesting limit is the non-compact condition, viz. high frequencies at which 
i (~,)~,  I- .oo:  

1 l p [__ 1/'/2 
~'~'~ c2-'i - ~ ~c22 - ~ /  13.1.11] 
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Equation [3.1.11] is the relevant limit if the imposed signal possesses significant high 
frequency components, such as in a Heaviside step. It is instructive to compare the present 
results with the more successful of  the two formulae presented by NWG (in the current 
notation): 

1+p 

It is seen that NWG's small correction does not agree with any of the forms presented 
herein, although in the circumstances the correction is so small as to he unimportant 
anyway. Nevertheless, these disagreements should not be underestimated, because they 
reflect the possible shortcomings in the one-dimensional modelling, and NWG's formula 
is not expected to be valid when p is not small. Moreover, the present theory does not 
predict any phase speed resembling NWG's second formula (which indeed they found to 
be in disagreement with experiment). 

It is noteworthy that several non-uniformities exist wherein the asymptotic expansion 
[3.3] breaks down, but these exist over narrow bands of frequency and will not be discussed 
here. 

Turning now to the higher modes n > 0, substitution of [3.1.3] in [3.1] yields, after 
retention of 0(p) terms 

#xn=- i (~--n2)21. tanh (~,.h,) [3.1.12a] 

where 

21. = (2,)k.l,.(o) = [/(22 -- ( n n / h ~  - KlZ] '/2 = [(21)22 -- (nn]h.z)z] ' t2 .  [3.1.12b] 

Above cut-off, ;q, will be real if (202 > n~/h2 and imaginary if (202 < mr~h2. 
Equation [3.1.12a] implies that: 

o r  

kn = k, (°) h2k~(O i p  21, tanh (21,h0 [3.1.13] 

1 1 an (°) 
a-~= antO) co2h~2~, tanh(A~h0 [3.1.14] 

where 

i [ 1 _ : . .y l , , ,  
a, (°) = c2 \° hd I [3.1.15] 

a, is the axial phase speed of the nth second-fluid duct mode, and [3.1.14] shows that 
a.  ~> an (°), irrespective of the sign of k ,  (°) - -  K1. 

This completes the assessment of the lighter-fluid modes. Which of these modes will 
appear in a particular situation will obviously depend on the method used to excite the 
system. 

3.2 Heavier-fluid modes 
These modes are associated with the condition 

cosh (2,hO = 0 [3.2. la] 
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viz. 

As before 

where 

21~hl = - iqrc, q = m + 1/2, m = 0, 1, 2 . . . .  [3.2.1b] 

2,.hl = - iq~t + ~,., k, .  = k= (°) + k, .  °) [3.2.2] 

k= (°) = [/(i 2 - (q~/hl)~1 Irz. [3.2.3] 

The cut-off frequencies are given approximately by: 

o~,. ~ qlrcl ~hi  [3.2.4] 

and it is noteworthy that the lowest mode m = 0, is non-planar in I and possesses a 
non-vanishing cut-off frequency. Thus, if cl < c2 plane modes could exist in II, but if Cl > c2 
no plane modes can exist at all under the present circumstances. 

Substituting in [3.1] as before 

~,~ = / q p x  coth (as,hz) [3.2.5a] 
hlA== 

where 

Hence 

where 

If 

and [3.2.7] becomes 

,!.=.. = [ k C 0 ~  _ K2~pl~. 

k= =km (°) + km(0~,22,, coth (Ash z) 

1 1 pa,,  (°) / q , t ~  = 7= coth(  

1 r 1 : q~t y1,~ 
~-~= LV-\7~,/J • 

[3.2.5b] 

[3.2.6] 

[3.2.7] 

[3.2.8] 

Several non-uniformities arise here too, for example Ksh2 ffi m~, but  their discussion will 
be postponed for the moment.  

1 1 pa , ,  (°) / qx 'X  = 
a--'~m '~ am(O----~ ~2--5~2hl ~-1  ) cot (Kshz). [3.2.9b] 

a2 ~ al, ;L~ ~- - iK2 [3.2.9a] 
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If K2h~ ~. 1, [3.2.9b] becomes 

1 1 [ 1 -  a"(°)2P .... fqlrl2] 
a-~ - ~ [ or(1 - a)'H4~ojK~] J" [3.2.1o] 

Evidently, this mode is slightly faster than am (°) . 

4. C O N C L U S I O N  

A free-mode time-harmonic analysis has yielded the familiar dispersion relation for 
acoustic waves propagating in stratified two-phase or two-fluid system. 

Explicit asymptotic solutions of this relation have bean obtained for the frequent 
situations in which the density of one fluid is much smaller than that of the other. 

If the heavier fluid also possesses a sound speed which is larger than that of the lighter 
fluid (see figure I), the results maybe smnmarised as follows. One planar mode (/Co) 
propagates at a speed close to c2 with amplitude remaining virtually constant in II but 
varying with y in I. Additional modes (kn) belonging to the same set are faster than c2, are 
invariably non-planar in II and may or may not be planar in I (depending on whether the 
phase speed is less or greater than c~ ). An additional set of modes (k~) is faster than ¢~ and is 
invariably non-planar in both I and II. 

The results explain the good agreement between one of NWG's formulae and the 
experiments, and identify a set of  acoustic modes which have apparently remained 
unnoticed previously. 

an 
Cl 

C2 

hi, h2 
H 
k 

K, 
K: 

x, y 
t 

NOMENCLATURE 

duct acoustic phase speed associated with n th mode 
acoustic speed in fluid I 
acoustic speed in fluid II 
fluid layer thickness, see figure I 
total duct height 
axial wavenumber, viz. frequency/axial phase speed 
~O/C! 

Cartesian co-ordinates, see figure 1 
time 

Greek symbols 
a void fraction in [3.1.9] 
,~i ( k2 - f12) I/2 

(k s - 

p~ density of fluid I 
P2 density of fluid II 

P P2/Pl 
velocity potential 

co radial frequency, rads. s -~ 
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